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CHAPTER 8

RidgeRace for ancestral character state

reconstruction and inference of

phenotypic rates

8.1 Introduction

Many biological studies are interested in the evolution of ancestral states of one or

several discrete and continuous characters on a phylogenetic tree (Chapter 6 reviews

current methods). Typical examples are the absence, presence or state of genes or traits,

environmental preferences of different species, measures of morphology or physiology,

or of behavioral or metabolic properties (a comprehensive collection of examples can

be found in Nunn, 2011). Comparative methods aim to determine genetic markers

correlating with each other, or with a specific phenotype, and thus often require the
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y4 = g0 + ga + gb + gc
gj = lj · βj

Figure 8.1: Model of phenotype evolution on a phylogenetic tree. The observed
continuous character values at nodes yi are the result of a sum of contributions on
ancestral branches. A virtual branch “above” the root node x1 is contributing the global
phylogenetic mean, i.e. the ancestral state of x1.

reconstruction of ancestral values (Elliot, 2013). Such reconstructions are also of interest

when fossil records cannot be retrieved, or when the phenotype of interest cannot be

reconstructed from them, e.g. when studying environmental conditions for a particular

species.

RidgeRace (Ridge Regression for Ancestral Character Estimation) is a method

inspired by the least-squares optimization technique of Cavalli-Sforza and Edwards

(1967). Similar to the concept of maximum parsimony, RidgeRace does not assume

certain evolutionary rates at certain regions of the phylogeny, or a particular model

of rate change over time. It treats phenotypic measurements at the terminal nodes

of a phylogeny as sample observations and relies on a simple linear regression with

L2-Norm regularization, allowing phenotypic rates to vary at every branch. It estimates

branch-wise rates and ancestral characters simultaneously, by inferring a regression

model that describes the phenotypes observed at the terminal nodes best. As in the

original BM model, we consider the leaf values to be the result of a weighted sum

of intermediate contributions gi created along the tree, beginning at the root (see

Figure 8.1). The contributions represent the gain or loss in character value on each

branch of the tree, with g0 holding a bias term representing the original contribution

of the root node. The contribution gj of a single branch j can be seen in analogy to

the formulation of BM: the gain or loss in phenotype is dependent on the length lj
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of branch j and of the speed βj of the process. RidgeRace infers the βj with ridge

regression and is thus able to reconstruct the values of inner nodes. In a simulation

study, we evaluate variations of Brownian Motion on randomly created trees and show

that our method performs equally well or better than established implementations of

two state-of-the-art reconstruction algorithms (Section 8.2). The branch weights βj

can be interpreted as phenotypic rates and provide insight into particularly interesting

areas of the phylogeny (see Section 8.3). We believe that RidgeRace might be of use in

studies aiming for reconstructions of ancestral character states of continuous characters

when no definite assumptions can be made about the type of evolutionary process, or

when the assumption of a model for phenotypic evolution is not appropriate at all. The

latter might for example be the case in studies that rely only on a hierarchical clustering

of samples instead of phylogenies. They can also be of use to judge the phenotypic

impact of e.g. genetic changes or other types of events associated with branches of the

phylogeny. When discrete data is provided in addition to the continuous phenotype and

the underlying phylogeny, RidgeRace reconstructs genetic changes to the inner branches

of the tree, and identifies those changes that occur on branches with a particularly

high phenotypic change. We will demonstrate this with an example application for a

cancer subtype stratification in Section 8.4. The last section of this chapter explains

the technical details of RidgeRace and the preprocessing steps for the analyzed data.

8.2 Evaluation with simulated data

To evaluate the suitability of our method for ancestral character state reconstruction, we

randomly created phylogenetic trees of increasing number of leaves. We evaluated two

different settings, which we named the simple Brownian motion setting (BMS) and the

extended setting using multiple regimes (ESMR). BMS refers to a standard simulation

of Brownian Motion beginning at the root, creating ancestral values for each inner

node. ESMR is an extension of BMS that divides the tree into κ regimes of Brownian

Motion with different variation parameters. Three different methods were compared for
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Figure 8.2: Pearsons correlation between inferred ancestral characters and true simulated
values, when using maximum likelihood reconstruction (yellow), GLS (red), and Ridge-
Race (blue). The plot shows (a) the dependence of performance on the standard
deviation σ of the BM process or (b) when increasing the number of leaf nodes in the
tree.

evaluation. We used the maximum likelihood method (“REML”) (Felsenstein, 1985)

and the generalized least squares method (Martins and Hansen, 1997) provided by the

function ape::ace as well as our ridge regression method. For each tree and each

character assignment, we provided the tree structure and the leaf node assignment

to the reconstruction method, which created a prediction for the assignment of inner

nodes. To estimate the correctness of a reconstruction method, we computed Pearsons

correlation between the predicted values and the true simulated values at those inner

nodes. Our evaluation showed that the method performs comparative or up to 3 percent

points better than other state-of-the-art techniques. For the BMS evaluation, Figure 8.2

shows that all three methods are able to reconstruct ancestral states very well, achieving

correlation values between 85 and 98 percent, even for very small trees or very high

variation values. However, RidgeRace shows consistently better correlation values than

the two reference methods. Performance is independent of the variation parameter

for all methods (Figure 8.2a), but does (not surprisingly) increase with the size of

the tree (Figure 8.2b). A similar observation can be made for ESMR with variable

rates. Similarly to the simple BMS, performance is independent of the size of the

range from which standard deviations for the tree regimes are drawn, and again the

correlation between predicted and true values increases with the number of nodes in
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Figure 8.3: Pearsons correlation between inferred ancestral characters and true simulated
values, with colors analogous to Figure 8.2. The plot shows (a) the dependence of
performance on increasing the interval U(0, sG) from which the rates of the BM processes
of each of the κ single regimes is drawn. Figure (b) shows performance when increasing
the number of leaf nodes in the tree.
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Figure 8.4: Pearsons correlation between inferred ancestral characters and true simu-
lated values, with colors analogous to Figure 8.2. The plot shows the dependence of
performance when increasing the number of regimes in the tree. Straight lines indicate
a linear fit between the two variables.

the tree (see Figure 8.3). RidgeRace achieved correlation values consistently higher

than the two other methods in all settings. When increasing the number of regimes,

performance drops slightly for all three methods, with the slope of the linear fit being

almost zero (see Figure 8.4, but still smallest (= slowest) for RidgeRace (RR: −5.06·10−4,

GLS: −5.78 · 10−4, ML: −8.38 · 10−4, estimated using the R-funcion stats::lm (R

Core Team, 2012)).
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Figure 8.5: Visualization of inferred phenotypic rates (parameter β) for a RidgeRace
reconstruction of thaumarchaeota amoA sequences. Strong orange or green colors
indicate high positive or negative rates. Rates are particularly high directly after
speciation to one of the phenotypically most specialized clusters (indicated by blue bars,
absolute rates indicated on branches), or at certain leaf notes with strongly diverging
phenotype (indicated by red bars).

8.3 Exemplary application on a thaumarchaeota data set

One advantage of RidgeRace over other methods is that it allows the phenotypic rate

βi to change on every branch of the tree. Typically, the phenotypic rate is assumed

to be constant. In more complex models, phenotypic rates may vary, but have to be

known in advance to reconstruct ancestral character states1 (Harmon et al. (2010) offers

a review of such models). Other techniques test for changes in the phenotypic rate in

predefined regimes of the tree (McPeek, 1995; O’Meara et al., 2006; Revell, 2008), but

do not reconstruct ancestral character states beside the root state, and again require

specific a priori assumptions on the locations of the regimes.

In a recent study on the ecology and evolutionary history of terrestrial thaumar-

1In fact, the GLSR approach is flexible enough to re-define the correlation structure provided by
the phylogenetic tree in a completely arbitrary manner, allowing the inclusion of all kinds of branch
transformations. However, it still requires the user to know the degree and position of the deviations
from the basic model.
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chaeota (Gubry-Rangin et al., 2014, in prep.), we have analyzed the influence of the pH

value of soil as an environmental factor that controls the adaptation of a specific lineage

of archaea capable of ammonia oxidation (see Gubry-Rangin and Hai (2011) and Nicol

et al. (2008) for details on the ecology and terrestrial distribution of thaumarchaeota).

An additional RidgeRace analysis of the pH preferences of thaumarchaeota samples

using a phylogeny inferred on amoA gene sequences (Figure 8.5) reconstructed the

pH value of the root of the tree, i.e. the common ancestor of all thaumarchaeota, to

6.18, a value very similar to the reconstruction of 6.3 under a Brownian Motion model

performed by the authors using the ape package in R (Paradis et al., 2004; R Core

Team, 2012)2. It also revealed that the phenotype (pH preference) has often evolved

quicker on ancestral than on more recent branches of the tree, and in particular on

branches directly after the separation of certain highly specialized pH clusters, such as

the three main abundant clusters of terrestrial thaumarchaeota (marked by blue bars

in Figure 8.5). This might indicate a particularly high speed of molecular adaptation.

RidgeRace assigns similarly high rates to a few samples with a pH preference that

strongly deviates from the mean of their clade (marked by red bars). This can be

considered an artifact of the method, but it also used as an indicator of phenotypic

outliers.

8.4 Example application to cancer data

Cancer as a disease of evolution

According to the World Health Organization, cancer is a leading cause of disease-related

deaths worldwide, responsible for 7.6 million deaths in the year 2008 (WHO, 2013a).

The term “cancer” describes a variety of different diseases that may affect any part of

the human body, with lung, stomach, liver, colon, and breast cancer being responsible

for most of the cancer-associated deaths. The causes for cancer are not entirely described

yet, but certain behavioral factors strongly contribute to the disease risk: about 30% of

2We performed Maximum Likelihood ratio tests to confirm that BM is indeed the most suitable
model and that no signal of evolutionary trend is present in the data.
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cancer deaths are related to high body mass index, low fruit and vegetable intake, lack

of physical activity, and tobacco or alcohol consumption (WHO, 2013a).

Cancer is initiated by transformations in single cells that are caused by external

factors such as physical, chemical, or biological carcinogens, or by a deficiency of cellular

repair mechanisms (e.g. due to high age). The disease is the result of a complex interplay

of genetic preconditions, external influences and interaction with the immune system.

The main genetic factors (hallmarks) underlying the disease are summarized in two

seminal papers by Hanahan and Weinberg (2000, 2011), which can be considered two

of the most influential publications in the field (but see also Lazebnik 2010). At the

time of creation of this thesis, the earlier paper has been cited more than 17,000 times3.

For a wide variety of cancer types, recent studies identified genes that are significantly

associated with cancer risk, onset, and progression (Kandoth et al., 2013; Röhr et al.,

2013; TCGAN, 2008, 2012a,b, 2013).

Tumors are now considered as a heterogeneous population of cells that are the result

of a shared process of evolution (Nowell, 1976). The author stated the concepts of

clonal expansion and discussed the interplay between cancer therapy and the evolution

of tumor cell subpopulations. By now, a large number of observations have provided

evidence for this theory. Several studies confirmed that the degree of genetic diversity

in a tumor cell population is a good predictor for malignancy (Maley et al., 2006). In

2006, Merlo et al. suggested to include the genetic instability preceding this diversity

as an additional hallmark of cancer, and the concept was included as an “enabling

characteristic” in the 2011 update by Hanahan and Weinberg. There exists a multitude

of known cancer diseases with a highly varying pathology and a similarly varying

heterogeneity of involved pathways. However, there might also be a strong difference

in tumor histologies between patients suffering from the same subtype (Yates and

Campbell, 2012). Even within a single tumor tissue, sub-tissues show differing copy

number profiles (Podlaha et al., 2012).

3according to Google Scholar, accessed 09/09/2013.
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RidgeRace for integrating cancer study data

To demonstrate a possible application of RidgeRace integrating phenotypic and genotypic

data, we studied an ovarian cancer data set, created by the TCGA research network,

and recently analyzed with Network Based Stratification (Hofree et al., 2013). Hofree

et al. argue that somatic mutations are likely to contain the causal drivers of tumor

progression, and that this type of data provides a promising source of information to

identify clinically relevant sub-clusters (stratifications). The authors note that tumors are

very heterogeneous, and genetic profiles are sparse and vary strongly between patients,

making clustering and stratification a challenging task. Network based stratification is

a new clustering method that smooths genetic profiles with the help of gene interaction

networks, and Hofree et al. show that it produces clinically meaningful clusterings. We

use a data set and the software provided by the authors (NBS, version 0.2, available

from the authors website) to reconstruct a hierarchical clustering on somatic mutation

data of ovarian cancer samples, creating a tree structure (Figure 8.6a).

Although it was not possible to check if our inferred clustering is completely identical

to the one discussed by Hofree et al., we similarly find that patients assigned to the

smallest of the four subtypes show an increased survival time (Figure 8.6b, green cluster).

A RidgeRace analysis of patient survival time as a phenotype consistently showed a

strong positive increase in rate at the branch leading to that cluster (Figure 8.6a, marker

m1 ). Similarly, RidgeRace infers a decrease in survival time on the branch leading to

the yellow cluster (marker m2 ). Marker m3 shows a rather small decrease in survival

time, because the red cluster splits in distinct two subtypes with a successive second

increase (m5) or a decrease (m4) in survival time, with branch (m4) leading to the

majority of the red cluster, which has the lowest survival time of all four clusters.

As suggested above, the RidgeRace reconstruction can be combined with the re-

construction of discrete genetic events. We mapped the binary data encoding the

absence or presence of non-synonymous mutations in a selection of genes to the tree (see

Section 8.5 for technical details). However, the mapping confirmed the diverse nature

of the somatic mutations. Only P53 was found to be mutated in almost all patients,

http://chianti.ucsd.edu/~mhofree/wordpress/?page_id=26
http://chianti.ucsd.edu/~mhofree/wordpress/?page_id=26
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(a) (b)

Figure 8.6: RidgeRace application to a clustering on somatic mutations inferred for a
ovarian cancer data set. Colors on the side of the tree indicate subtypes inferred with
Network Based Stratification (Hofree et al., 2013). Branches are colored according to
the phenotypic rate parameter β, thickness of branches is proportional to the number
of nodes below them. Branches leading to leaf nodes were colored grey for improved
visibility. Markers m1 to m5 indicate branches with strong changes in patient survival
time. Changes in the absence or presence of mutations in selected genes are indicated
on all branches with 4 or more children.

and was reconstructed to be mutated at the root of the tree. Beside P53, only TTN

was reconstructed to appear on a higher level node, it is “gained” (mutated) at branch

m3, and present in 83 of 85 patients of the red cluster. RYR2 is gained on branch m5

and present in 9 out of 85 patients of the red cluster. Besides these changes, no change

appears on a branch higher than five levels below the root.

It is obvious that, although RidgeRace is able to correctly display the main structure

of the phenotype, no significant association between genetic aberrations and change

in survival rate is possible in this case. However, this demonstration provides many

insights for future improvements:

• The survival rate as a phenotype might be a very biased measurement, since it

is based on the time of diagnosis and the (potential) death of the patient. A
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very late onset of therapy or simply a survival of the patient might influence this

measurement.

• The phylogeny itself may be a source of bias: although Hofree et al. 2013 con-

vincingly argue that their method produces clinically meaningful subclusters, the

technique is based on a large number of parameters, among them the final number

of main clusters, and the underlying gene interaction network (we used the param-

eters inferred by the authors). Hofree et al. suggest that future improvements of

NBS may consider other alterations than non-synonymous mutations, or consider

the length of genes.

• The subtypes identified by NBS may indeed represent the correct genetic stratifi-

cation of the patients, nevertheless, their survival time may be dependent on many

other factors, e.g. patient age and type of received therapy. Since RidgeRace is

essentially a regression patient data, such information can easily be included as

additional covariates, giving insight into their relevance relative to genetic factors.

8.5 Technical details of the method

RidgeRace weight inference

RidgeRace is primarily intended as a method to estimate ancestral character states on

a phylogenetic tree. As in the original BM model, we consider the leaf values to be

the result of a weighted sum of intermediate contributions gi created along the tree,

beginning at the root (see Figure 8.1). The contributions represent the gain or loss in

character value on each branch of the tree, so that, for example, the character value of

sample y4 can be described as

y4 = g0 + ga + gb + gc ,

where a, b, c represent the branches in the tree, and g0 holds a bias term representing

the original contribution of the root node. The contribution gj of a single branch j can
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be seen in analogy to the formulation of BM: the gain or loss in phenotype is dependent

on the length lj of branch j and of the speed βj of the process, in analogy to the variance

term σ2 in the BM model:

gj = lj · βj .

One can then write the solution for the vector of leaf phenotypes Y in matrix form:

Ŷ = Lβ, (8.1)

where

Li ,j =


lj if branch j is on the way from the root to sample i

1 if j = 0

0 else

and β is a vector of length equal to the number of branches in the phylogeny, including

a single virtual branch above the root to account for its original contribution g0. Note

that this scheme allows an easy inclusion of measurements at inner nodes, e.g. from

fossil records. It is also suited to account for multiple measurements at single nodes

simply by adding additional rows to Y and L.

Ridge regression then estimates a vector β̂ that explains the known observations Y

best:

β̂ = arg min
β

∑
i

(yi − (Lβ)i)
2 + λ

∑
j

β2j , (8.2)

and the text book solution (see, e.g. Hastie et al., 2009) to this optimization problem

is

β̂ =
(
LTL + λI

)−1
LTY.

Equation 8.2 shows how the optimization tries to balance the leaf reconstruction error

versus a regularization term. This second term forces the βj and therefore the gains gj

to be distributed evenly across the tree, towards a globally constant rate (see Hastie

et al. (2009) for a discussion on the influence of regularization terms). Without this
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term, a trivial but undesirable solution to the optimization would set the gain at each

terminal branch equal to the according terminal node value, leaving all other gains

empty and making ancestral reconstruction impossible.

For a given estimate of β̂, the vector Â containing the phenotypic reconstruction of

all inner nodes can then be computed analogous to equation 8.1:

Â = L′β̂, (8.3)

where

L′i ,j =


lj if branch j is on the way from the root to ancestor i

1 if j = 0

0 else

Note that this formulation is very similar to the generalized least squares method

proposed by Martins and Hansen (1997). They similarly suggest to infer ancestral

character states as weighted average of leaf contributions, with weights according to the

covariance between an ancestor and a leaf (see equ. (10) in Martins and Hansen (1997),

and Cunningham et al. (1998) for a worked example):

Â = WY + ε (8.4)

W = cov [A,Y]var [Y]−1, (8.5)

where the covariance between and inner node a and a leaf node y is defined as σ2Ta,y ,

with Ta,y being the distance between the root of the tree and the most recent common

ancestor of a and y (see Figure 7.4 for an example). RidgeRace differs in the sense

that it allows to estimate a weight βj for every branch instead of assuming a constant

rate σ2, or, more general, predefined covariances between nodes. Extensions of the

simple GLS approach under the Brownian motion model use more complex matrices

W. However, the design of W has to be defined in advance based on specific model

assumptions, whereas RidgeRace offers to estimate rates independently.
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Simulation study

We created random trees with an increasing number N of leafs using the function

rtree in the R-package textttape (Paradis et al., 2004; R Core Team, 2012). For a

first evaluation (BMS), we simulated Brownian motion with variation σ2 along the

branches of the tree, resulting in a character assignment for every inner or leaf node.

The parameter σ2 was iteratively increased in each round of simulation. In the extended

setting (ESMR), we simulated changing rates of evolution in the tree by dividing the tree

into κ different regimes, and in every regime ri , a new rate σ2i was drawn at random from

a global uniform distribution in the interval U(0, sG). To make the process increasingly

more variable and difficult, the size of that interval sG was iteratively increased with

every simulation, thus allowing larger σi to be drawn. The simulation of Brownian

motion in each regime was performed using the respective σ2i , resulting in a character

assignment for all nodes. This process was repeated several times and for different

parameters σ2, sG , κ and N . See supplementary text D and supplementary Figure D.1

and D.2 for details on the simulation algorithms and parameter settings. The random

tree and the simulated values obtained at the leaf nodes were provided as input to

RidgeRace, and an implementation of the ML and GLSR algorithms in the ape function

for ancestral character state estimation (ace). Obtained reconstructed values were

mapped back to the inner nodes of the tree and compared with the simulated ones using

Pearson’s correlation coefficient (leaf nodes were excluded).

Analysis of thaumarchaeota data

The pH preferences of 425 thaumarchaeota samples of 16 subtypes and a phylogeny

based on their amoA genes was obtained from a collaboration project (Gubry-Rangin

et al., 2014, in prep.). PH preferences were mapped to the leafs of the phylogeny

and ancestral values were reconstructed with RidgeRace using λ = 10−5. Inferred

phenotypic rates βj were visualized using FigTree (Rambaut, 2013). In the collaboration

project, we used the given phylogeny for maximum likelihood ratio tests to infer the

most suitable model of continuous phenotype evolution. Among others, we compared
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Brownian Motion to models containing Ohrnstein-Uhlenbeck processes with different

numbers of regimes, an early burst and a trend model. The ML ratio tests inferred BM

to be the best fitting model.

Preprocessing of cancer data

A binary matrix describing the absence or presence of non-synonymous mutations

in 9850 genes for 325 patients was taken from the supplementary data provided by

Hofree et al. (2013). As indicated by the authors in their article and supplementary

material, we used their software with 4 clusters and the HM network, and default

parameters, creating 1000 bootstrap samples. We then inferred a hierarchical clustering

(average linkage) on the bootstrap similarity matrix with NBS methods and used the

inferred topology as input tree for RidgeRace. Information on patients survival rate

was downloaded from the TCGA database

(TCGAN, 2011). Phenotypic rates were inferred with RidgeRace as described

above. The binary genetic profile of each patient was mapped to the leaf nodes and

reconstructed to inner nodes with the Sankoff algorithm implemented in RidgeRace,

using a simple 0/1 cost matrix and the ACCTRAN principle in case of ambiguities.

“Mutations”, i.e. changes in genetic profile, were then reconstructed on the branches of

the tree. Finally, the tree was visualized using FigTree (Rambaut, 2013).


